
Antoine Sauray RISE ACREO

MPLS implementation using P4

Antoine Sauray

June 16, 2017

Contents
1 Definitions 1

2 Simulated network 2

3 Implementing MPLS operations 3

4 Testing, logging and monitoring 9

1 Definitions

P4

P4 is a programming language designed to allow programming of packet forwarding
planes. In contrast to a general purpose language such as C or Python, P4 is a
domain-specific language with a number of constructs optimized around network data
forwarding. P4 is an open-source, permissively licensed language and is maintained
by a non-profit organization called the P4 Language Consortium.

Multi protocol label switching (MPLS)

Multiprotocol Label Switching (MPLS) is a type of data-carrying technique for high-
performance telecommunications networks. MPLS directs data from one network node
to the next based on short path labels rather than long network addresses, avoiding
complex lookups in a routing table. The labels identify virtual links (paths) between
distant nodes rather than endpoints. MPLS implements three types of operations,
which are swap, push and pop.

RISE ACREO page 1 2016 – 2017

Antoine Sauray RISE ACREO

Mininet and bmv2

In order to execute P4 code, we need to virtualize a network. Using Mininet, we are
able to create a virtualized network easily, and therefore to create topologies that suit
our needs. The version 2 of the Behavioral Model (BMV2) is the second version of
the P4 software switch. It will allow us to a simulate p4 switch on our network.

2 Simulated network

Topology

We propose a topology in order to test our P4 code. It can be created using the
Python script "run_network.py".

Figure 1: Proposed topology to test MPLS operations

Compile and run P4 code on a switch

in the Git repository, you will find a script named "compile.sh". This script compiles
the P4 code in p4src/simple_router.p4 and generate a file named simple_router.json.
This file matters because it is what will be loaded by the previous script "run_network.py"
on each of the switch in the network. Also, please note that "run_network.py" has
been modified to perform all the cleaning operations for you. It will handle sigint in
order to remove your switches and will also perform cleaning on start if necessary.

git clone git@gitlab.testbed.se:berpec/p4_segmented_routing.git
cd mpls_implementation/src/mpls/

RISE ACREO page 2 2016 – 2017

Antoine Sauray RISE ACREO

./compile.sh
python run_network.py

Applying P4 tables

Once the network started, the run_network.py script will load the tables in the
switches. You can configure it by changing the command files. The thrift port relate
to the way mininet works. It exposes each switch on the host through this thrift port.
You can call the client by connecting to this port.

switch1
configure_dp("commands/commands-push.txt", thrift_port)
switch2
configure_dp("commands/commands-push.txt", thrift_port+1)
switch3
configure_dp("commands/commands-push.txt", thrift_port+2)
switch4
configure_dp("commands/commands-pop.txt", thrift_port+3)
switch5
configure_dp("commands/commands-pop.txt", thrift_port+4)
switch6
configure_dp("commands/commands-pop.txt", thrift_port+5)
switch7
configure_dp("commands/commands-swap.txt", thrift_port+6)
switch8
configure_dp("commands/commands-s8.txt", thrift_port+7)

3 Implementing MPLS operations
Before applying actions, we need to match our input. This is the table that allows us
to match a label and an ingress port to an action.

table mpls_exact {
reads {

mpls.label : exact;
standard_metadata.ingress_port : exact;

}
actions {

mpls_swap;

RISE ACREO page 3 2016 – 2017

Antoine Sauray RISE ACREO

mpls_push;
mpls_pop;
_drop;

}
size: 1024;

}

Swap

The swap is the easiest operation to implement. It takes the incoming port and a
label, and forwards on an outgoing port with a new label. The code is as follows.

action mpls_swap(new_label, port) {
// set the metadata for the type of operation
modify_field(mpls_metadata.mpls_type, MPLS_PUSH);
// decrement ttl
add_to_field(mpls.ttl, -1);
// change the label to the new one
modify_field(mpls.label, new_label);
// set the outgoing port
modify_field(standard_metadata.egress_spec, port);

}

The commands for the table are the following

table_add mpls_exact mpls_swap 200 1 => 200 2

For an incoming mpls packet with label 200 on port 1, forward it on port 2 with label
200.

RISE ACREO page 4 2016 – 2017

Antoine Sauray RISE ACREO

Push

The push operation is more subttle due to a P4 limitation. The principle of push is to
add a new MPLS header between the Ethernet header and the current MPLS header.

Figure 2: Where we want to add the new MPLS header

Though the problem with is P4 version 14, is that we cannot add a new header
that is the same as the one we are currently parsing. This code does not work.

action mpls_push(new_label, port, cos, ttl) {
// set the metadata for the type of operation
modify_field(mpls_metadata.mpls_type, MPLS_PUSH);
// push a new mpls
add_header(mpls);
modify_field(mpls.label, new_label);
modify_field(mpls.s, 0);
modify_field(mpls.cos, cos);
modify_field(mpls.ttl, ttl);
add_to_field(mpls.ttl, -1);

modify_field(standard_metadata.egress_spec, port);
}

}

P4 does not have such notion of variables. It calls headers by their name. In that
case there is an unexpected behavior. Are we modifying the current MPLs or the new
one we just added ? To fix this problem, the proposed solution of P4 programmers
is to create a second header for MPLS, which contains the same fields but is named
differently. In this example, we will name it mpls_between.

RISE ACREO page 5 2016 – 2017

Antoine Sauray RISE ACREO

header mpls_t mpls;
header mpls_t mpls_between;

Another issue with P4 is that it does not allow us to create a header that is not used
in the deparsing process. In our case, this mpls_between is used only for creation.
We use the orignal mpls header for deparsing instead. There is a proposed hack to
make this work.

parser parse_ethernet {
extract(ethernet);
return select(latest.etherType) {

MPLS_unicast : parse_mpls;
MPLS_multicast : parse_mpls;
// HACK because of P4 : 0x8840 must never be reached

0x8840 : parse_mpls_between;
default: ingress;

}
}

This idea behind this code is to find an ethernet type that will never be met in our
case. For instance, we use 0x8840 here. In this code, parse_mpls will be called when
we meet this type. In practice, because it never happens we will never never reach
this part. P4 does is not aware of this and therefore allows the compilation process
to finish successfully. it is very important that this 0x8840 type is never sent on the
network otherwise the behavior will be unexpected, because the switch will try to
parse a MPLS header where there is not. So here is the correct implementation.

action mpls_push(new_label, port, cos, ttl) {
// set the metadata for the type of operation
modify_field(mpls_metadata.mpls_type, MPLS_PUSH);
// push a new mpls header
add_header(mpls_between);
// change the label, bottom of stack, class of service and time to live of the pushed header
modify_field(mpls_between.label, new_label);
modify_field(mpls_between.s, 0);
modify_field(mpls_between.cos, cos);
modify_field(mpls_between.ttl, ttl);

add_to_field(mpls.ttl, -1);

RISE ACREO page 6 2016 – 2017

Antoine Sauray RISE ACREO

modify_field(standard_metadata.egress_spec, port);
}

Pop

The pop operation needs to remove the first packet of the MPLS stack. We need to
handle a few cases.

1. If the current header is the not last (s, the bottom of stack bit, is set to 0), then
we can remove the header.

2. If the current header is the last (s, the bottom of stack bit, is set to 1), then
we remove the header but we need to change the Ethernet type because we are
now in a situation where there is no more MPLS header to be parsed.

Table 1: Packet before and after Pop

(a)

ETHERNET MPLS IP

(b)

ETHERNET IP

The issue here is we are not allowed to perform conditional branching in actions.
We would like to do this.

action mpls_pop(port) {
modify_field(mpls_metadata.mpls_type, MPLS_POP);
add_to_field(mpls.ttl, -1);
if (mpls.s == 1) {

// need to put the right type
// once we remove all the mpls headers
/ from the stack
ethernet.etherType = ETHERTYPE_IPV4

}
remove_header(mpls);
modify_field(standard_metadata.egress_spec, port);

}

But this code is not correct. The solution we propose is to perform the conditional
branching in the egress control. We will use the type of action for MPLS there and
when we meet a pop action and a mpls bottom of stack, we will change the ethernet
type to ipv4 (or ipv6 if we wanted to).

RISE ACREO page 7 2016 – 2017

Antoine Sauray RISE ACREO

action set_ether_ipv4(){
modify_field(ethernet.etherType, ETHERTYPE_IPV4);

}

table ether_type {
actions {

set_ether_ipv4;
}
size: 256;

}
control egress {

if(mpls_metadata.mpls_type == MPLS_POP and mpls.s==1) {
apply(ether_type);

}
apply(send_frame);

}

There is one thing to mention though with this approach. Because our table ether_type
has nothing to match against, it will always be missed, and therefore our action will
never be called. The workaround for this is to define the action set_ether_ipv4 as a
default action for the table, which means that when the table will be missed, and it
will, the default action to be executed is the one we want. We do it with the following
code in the command file.

table_set_default ether_type set_ether_ipv4

Also, to specify the pop operation, we use this command.

table_add mpls_exact mpls_pop 200 1 => 2

For an incoming mpls packet with label 200 on port 1, forward it on port 2.

RISE ACREO page 8 2016 – 2017

Antoine Sauray RISE ACREO

Figure 3: You can see that the packet arrives as ip on host 2

4 Testing, logging and monitoring

Testing

in the git repository, you will find a script called "test.py". This script forges MPLS
packets. In order to test your network, you need to start it from HOST 1. After you
run the "run_network.py" script, it opens the mininet client. Type the following lines
of code.

xterm h1
python test.py

RISE ACREO page 9 2016 – 2017

Antoine Sauray RISE ACREO

Figure 4: Terminal access on host 1 using mininet client

It will execute the test script on HOST 1. The problem is that right now, you cannot
see what is going on. We will talk about this in the logging section.

Logging

Packets on Host 2

First, you need to spawn a terminal for host 2 using the "xterm h2" command in the
mininet client. Then you need to execute the following tcpdump command in order
to see the traffic.

xterm h2
tcpdump -vvv -nnXSs 0 'mpls'

RISE ACREO page 10 2016 – 2017

Antoine Sauray RISE ACREO

Figure 5: Logs on Host 2 using tcpdump after host 1 executed test.py, we can see the
mpls packet and its fields

Switch logging and route discovery

We propose a script named "log_mininet_switch.sh" which allows to log any P4
execution information. It can serve multiple purposes.

1. Debug your P4 code on any switch on the network

2. Discover which switches handled your traffic

RISE ACREO page 11 2016 – 2017

Antoine Sauray RISE ACREO

Figure 6: Easy logging of each switch in the network

On this image, you can see traffic going from host 1 to switch 1, to switch 2, to
switch 4, to switch 6 and finally to switch 8. On each of the switches you can see the
match action the packet has gone through and what happened to it. Also, as you see,
this script works well when used with a terminal multiplexer such as tmux.

RISE ACREO page 12 2016 – 2017

Antoine Sauray RISE ACREO

Conclusion
You now has a fully working version of MPLS using P4. The next step will be to
implement segment routing, a new technology which will allow to have FRR protection
for any topology, simpler to operate and more scalable.

RISE ACREO page 13 2016 – 2017

	Definitions
	Simulated network
	Implementing MPLS operations
	Testing, logging and monitoring

